Lie Class | Group | # of generators | isomorphisms | extended Dynkin Diagram | discrete center |
---|---|---|---|---|---|
An | SU(n + 1) | (n + 1)2 - 1 | A1 ~ B1 | ![]() | Zn + 1 |
Bn | SO(2n + 1) | n (2n + 1) | B1 ~ C1 | ![]() | |
Cn | Sp(2n) | n (2n + 1) | C2 ~ B2 | ![]() | Z2 |
Dn | SO(2n) | n (2n - 1) | D2 ~ A1 + A1 | ![]() | Z2 |
D3 ~ A3 | |||||
E6 | E6 | 78 | ![]() | ||
E7 | E7 | 133 | ![]() | Z2 | |
E8 | E8 | 248 | ![]() | Z3 | |
F4 | F4 | 52 | ![]() | ||
G2 | G2 | 14 | ![]() |
Notes:
- The rank n is the dimension of the Cartan subalgebra (the maximal Abelian subalgebra), whose eigenvalues in the adjoint representation are the roots.
- SU(n) leaves invariant the quadratic form zi zbari; SO(n) leaves invariant the quadratic form xi xi; Sp(n) leaves invariant the quadratic form in 2n dimensions xi x'n + 1 - i - x'i xn + 1 - i.
- In the (extended) Dynkin Diagrams, removing a root yields a (maximal) subgroup.
©2008, Kenneth R. Koehler. All Rights Reserved. This document may be freely reproduced provided that this copyright notice is included.
Please send comments or suggestions to the author.