The first thing to say about supergravity theories is that they can be approached as purely classical theories, with the proviso that there is no contradiction in the idea of a classical fermionic field. The common use of spinors in General Relativity is certainly consistent with that view, and we shall take the approach here that supergravity is a classical field theory, and that the membranes we will discuss are described by classical fields. We will use the traditional names for the fields but in no way imply that they are quantized.
In these theories, the metric is generally replaced by the vielbein as the fundamental field
describing the geometry:
gμ ν = ηa b
eμa eνb
where we are using Greek letters to denote spacetime indices and
Latin letters to denote tangent space indices.
e is a map between spacetime and Minkowski Spacetime
(which is everywhere equivalent to the tangent space); its inverse is
eμa
If the metric is diagonal, the vielbein can be simply the square root of the metric, although this is not always the most useful form. In general when constructing vielbeins by hand, it is a good idea to check them, making sure that in addition to the above, they satisfy:
gμ ν eμa eνb = ηa bgμ ν = ηa b eμa eνb and
eμa eνb gμ ν = ηa b
The supersymmetric partner of the vielbein is
Ψμ α,
the spin 3/2 gravitino (we will use Greek letters from
the beginning of the alphabet to denote spinor indices). Spinors are in general
2Floor D / 2 - dimensional, which means that the D = 11 gravitino spinor index
α varies from 1 to 32.
Γ denote the gamma matrices, which satisfy the Clifford Algebra
Γ2 i + 2 = σ3i x
σ2 x In - i - 1
anticomm[ xx_List, yy_List] := Dot[xx, yy] + Dot[yy, xx];
recurprod[ mm_List, nn_] := If[ nn == 1, mm[[1]], Dot[ recurprod[mm, nn - 1], mm[[nn]]]];
gammamatrix[ t_, ss_] := Block[ {mm, ind, gmdim, fact, fact2, check, mtest, gammam}, (
If[ Floor[mm / 2] == (mm / 2), fact = I^( Mod[mm, 4] / 2), fact = (-1)^((-3 - mm) / 4)];
gmdim = 2^Floor[mm / 2];
ind = Table[ Flatten[ {
Table[4, {jj, Floor[mm / 2] - Floor[(ii - 1) / 2] - 1}]}],
{ii, 2 Floor[mm / 2]}];
gammam = Table[ Table[ Table [Product[
1 + Mod[ Floor[(ii - 1) / (2^Floor[mm / 2 - ll])], 2],
1 + Mod[ Floor[(jj - 1) / (2^Floor[mm / 2 - ll])], 2]]],
{ll, mm / 2}], {jj, gmdim}], {ii, gmdim}], {kk, mm}];
check = Table[ Table[ anticomm[ gammam[[ii]], gammam[[jj]]], {jj, mm}], {ii, mm}];
Print["Anticommutator check: ", {Table[
check[[mm, mm]] == ((-1)^t) 2 IdentityMatrix[gmdim],
Table[ Table[
{jj, ii + 1, mm}], {ii, mm - 1}]}];
If[ t == 1, fact2 = I^(1 - Mod[Floor[mm / 2], 2]),];
mtest = fact2 * recurprod[ gammam, mm];
AppendTo[ gammam, mtest];
Print["Chiral operator check: ", Dot[mtest, mtest] == IdentityMatrix[gmdim]];
Return[gammam];)];
The gamma matrices are frequently used in totally antisymmetrized products such as
If[ nn == 2, agamma = Table[ Table[
{kk, dim}], {jj, dim}] -
Do[ Do[ Do[(
agamma[[ii, kk, ll]] = Dot[ gammad[[ii]], gammad[[kk]], gammad[[ll]]];
ind = Rest[ind];
Do[
{mm, Length[ind]}];),
In order to be able to compute the covariant derivative of fermionic fields
Finally, we must define the gauge field strength tensor, which is self-dual, totally antisymmetric and in
D = 11 has 4 indices:
{ Γa αγ ,
Γb γβ } =
2 ηa b
δαβ
For n = Floor ( D / 2 ),
the gamma matrices can be computed in pairs as the following tensor products of sigma matrices
[Tanii]:
Γ2 i + 1 = σ3i x
σ1 x In - i - 1
where the superscripts here indicate the number of factors for each sigma matrix in the tensor product
and i runs from 0 to n - 1.
These can be computed and checked using the following Mathematica code:
sigma = {{{0, 1}, {1, 0}}, {{0, -I}, {I, 0}}, {{1, 0}, {0, -1}}, IdentityMatrix[2]};
The gammamatrix function has two arguments: the number of
timelike and the number of spacelike coordinates in the spacetime for which we are generating the matrices.
The first parameter is generally either 0 or 1; we will see the utility of this in the following.
The variable ind is a list specifying the order of the tensor products of the sigma matrices for each
gamma matrix. The recurprod function recursively performs a matrix multiplication
of all of the gamma matrices in order to construct the chiral operator
ΓD+1,
with an overall numerical factor specified by the
variable fact2. ΓD+12 is equal to the Identity Matrix;
in odd dimensions, ΓD+1 is proportional to the Identity Matrix.
Note that the gamma matrix spacetime index runs from 1 to D, with ΓD
being the timelike matrix. Dot is used for matrix multiplication.
mm = t + ss;
Table[3, {jj, Floor[(ii - 1) / 2]}], 2 - Mod[ii, 2],
If[ Floor[mm / 2] == (mm / 2), , AppendTo[ ind, Table[4, {ii, Floor[mm / 2]}]]];
sigma[[ind[[kk, ll]],
If[ (Floor[mm / 2] == (mm / 2)), ,
If[ (mm - 1) > 0, gammam[[mm]] = fact * recurprod[ gammam, mm - 1],]];
If[ t == 1, gammam[[mm]] = gammam[[mm]] * I,];
check[[ii, ii]] == 2 IdentityMatrix[gmdim], {ii, mm - 1}],
fact2 = fact;
{ii, jj, check[[ii, jj]] == 0 IdentityMatrix[gmdim]},
Γa b αβ =
Γa αγ
Γb γβ -
Γb αγ
Γa γβ, etc.
These can be computed using the following Mathematica code as an example:
antigamma[ gammad_, nn_] := Block[ {dim, agamma, ind},(
This algorithm makes use of the fact that due to the Clifford Algebra, products of different
gamma matrices are
automatically antisymmetric. Outer is used to create the block diagonal identity matrices which are
subtracted out of the simple products in the 2 index case; the usual technique of using the antisymmetry to
fill in the remaining
matrices is used for the case of the 3 index product. This code assumes that the gamma matrices include
the chiral operator as described above.
dim = Length[gammad] - 1;
Dot[ gammad[[jj]], gammad[[kk]]],
If[ nn == 3, (
Outer[ Times, IdentityMatrix[dim], IdentityMatrix[ Length[ gammad[[1]]]]],];
agamma = Table[ Table[ Table[0, {kk, dim}], {jj, dim}], {ii, dim}];
Return[agamma];)];
ind = Permutations[ {ii, kk, ll}];
agamma[[ind[[mm,1]], ind[[mm,2]], ind[[mm,3]]]] = Signature[ ind[[mm]]] agamma[[ii, kk, ll]],
{ll, kk + 1, dim}], {kk, ii + 1, dim - 1}], {ii, dim - 2}];),];
δαβ
dμ +
ω μa b
Γa b αβ / 4
we must define the spin connection
ω μa b,
which can be computed from the
Christoffel Connection and the vielbein
ω μa b =
- ηb c
eνc
(d eνa / d xμ -
Γρμ ν
eρa)
and which is antisymmetric in the upper indices.
fν ρ σ τ
BPS (Bogomolny, Prasad and Sommerfield) membranes are bosonic and preserve partial supersymmetry
[Duff-95]. For consistency, if we are to be able to set
the fermionic fields to zero, we must make sure that the variational equations for those fields also
vanish. In D = 11, this means that the gravitino variations must be zero
[Stelle]:
&delta Ψμ α = (δαβ dμ + ω μa b Γa b αβ / 4 + fν ρ σ τ eμa eνb eρc eσd eτe Γa b c d e αβ / 144 -where we have omitted terms proportional to the gravitino. The supersymmetry parameter ε is called a Killing Spinor, and is taken to be a tensor product of two "sub-spinors" of definite chirality relative to their respective spaces. These spaces correspond to the membrane and the submanifold orthogonal to it. If the gamma matrices for each subspace are denoted by γ and Γ, respectively, and the dimension of the γ subspace is n, the D = 11 gamma matrices have the formfμν ρ σ eνa eρb eσc Γa b c αβ / 18) εβ
{γ x I, γm+1 x Γ}The following Mathematica code will compute such matrices:
crossmatrix[ mat1_List, mat2_List] := Block[ {row1, col1, row2, col2, crow, ccol, cross},(The crossmatrix function creates a block-diagonal matrix from its arguments, while splitgamma uses it to construct the block-diagonal gamma matrices. Here we see the utility of being able to create gamma matrices corresponding to a spacelike manifold. If we wish, for instance, to construct a set of gamma matrices which explicitly reflect an SO(7) X SO(3,1) symmetry, we might use the following:row1 = Length[mat1];splitgamma[ gamma1_List, gamma2_List] := Block[ {p1, p2, gd, sgamma},(col1 = Length[mat1[[1]]];
row2 = Length[mat2];
col2 = Length[mat2[[1]]];
crow = row1 * row2;
ccol = col1 * col2;
cross = Table[ Table[
mat1[[1 + Mod[ Floor[(ii - 1) / row2], row1], 1 + Mod[ Floor[(jj - 1) / col2], col1]]] * mat2[[1 + Mod[ (ii - 1), row2], 1 + Mod[(jj - 1), col2]]],Return[cross];)];{jj, ccol}], {ii, crow}];
p1 = Length[gamma1] - 1;p2 = Length[gamma2] - 1;
sgamma = Table[0, {ii, p1 + p2}];
If[ p1 == (2 Floor[p1 / 2]),(
gd = Length[ gamma2[[1]]];AppendTo[ sgamma, recurprod[ sgamma, p1 + p2]];Do[ sgamma[[ii]] = crossmatrix[ gamma1[[ii]], IdentityMatrix[gd]],
{ii, p1}];Do[ sgamma[[ii + p1]] = crossmatrix[ gamma1[[p1 + 1]], gamma2[[ii]]],{ii, p2}];),(gd = Length[ gamma1[[1]]];Do[ sgamma[[ii]] = crossmatrix[ gamma1[[ii]], gamma2[[p2 + 1]]],
{ii, p1}];Do[ sgamma[[ii + p1]] = crossmatrix[ IdentityMatrix[gd], gamma2[[ii]]],{ii, p2}];)];Return[sgamma];)];
gammap = gammamatrix[0, 7];crossmatrix can also be used to construct supersymmetry parameters which reflect the same symmetry:gammaq = gammamatrix[1, 3];
gamma11 = splitgamma[ gammap, gammaq];
parmp = Table[{Symbol["pp" <> ToString[i]]}, {i, 8}];Of course, the membranes must also satisfy the gauge field equations:parmq = Table[{Symbol["pq" <> ToString[i]]}, {i, 4}];
parm11 = crossmatrix[ parmp, parmq];
Dμ fμ ν ρ σ = - εν ρ σ α β χ δ ε φ γ η fα β χ δ fε φ γ η / 576and what are usually termed the graviton field equations:
Rμ ν - R gμ ν / 2 = fμρ σ τ fν ρ σ τ / 3 - gμ ν f2 / 24These latter are of course the supergravity generalization of Einstein's Equations. Mosty solutions use highly specific ansatze, ie.:
fμ ν ρ σ = εμ ν ρ σ f ( r ),
where εμ ν ρ σ is the volume form for a sub-manifold and r is a radial coordinate on the complementary submanifold. But, one could start with a geometric solution and attempt to find a self-dual gauge field which satisfies the field equations.
We will also be interested in a D = 10 theory, called the IIB Supergravity Theory. It has a dilatino
λ in addition to the gravitino, a dilaton φ
in addition to the vielbein, and a gauge 3-form field H and a self-dual gauge 5-form field F in place
of the 4-form gauge field. These fields all arise from the dimensional reduction. The dilatino variation
equation is
i Fν ρ σ τ φ
eνa eρb
eσc eτd
eφe
Γa b c d e αγ
eμf
Γf γβ
/ 480)
εβ
δ λα =
(Γaαβ eμa
dμ
φ -
e - φ / 2
Γa b cαβ
eμa eνb
eρc
Hμ ν ρ / 12)
εβ
once again omitting terms proportional to the dilatino and gravitino. The gravitino
variation equation is now
δ Ψμ α = (δαβ
dμ +
ω μa b
Γa b αβ / 4 +
The dilaton field equation is
e - φ / 2
(Hν ρ σ eμa
eνb eρc
eσd
Γa b c d αβ -
9 Hμν ρ eνa
eρb
Γa b αβ) / 96 +
Dμ dμ
φ = - e - φ
Hμ ν ρ Hμ ν ρ / 12
and the gauge field equations are
Dμ (e - φ
Hμ ν ρ) = 0
and
Fν ρ σ τ φ = εν ρ σ τ φη ι θ κ λ
Fη ι θ κ λ
(the latter simply enforcing the self-duality condition). Finally, the graviton field equation for the IIB theory is
Rμ ν =
dμ φ dν φ / 2 +
Fμρ σ τ λ
Fν ρ σ τ λ / 6 +
e - φ
(Hμρ σ Hν ρ σ -
gμ ν
Hμ ν ρ Hμ ν ρ / 12) / 4
Curvature Invariants on Supergravity Membranes
In the following, we will be using the so-called "Einstein metric". The Weyl rescaling to the "string metric" is
a conformal transformation (when well-defined, that is, when everwhere finite and nonzero) which means that
the resulting metric is not in the same
diffeomorphism class as the Einstein metric.
We will examine three relatively simple BPS membranes:
ds2 = r9/2 / (k + r6)3/4 ( dx2 - dt2) + (k + r6)1/4 / r3/2 dy2(where r2 = Σ yi2),φ = ln (r6 / (k + r6)) / 2
Hμ 0 1 = - dμ (ε0 1 r6 / (k + r6))
F = 0
ε = (r6 / (k + r6))3/16 {1, 0} X {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0}
ds2 = r1/2 / (k + r2)1/4 ( dx2 - dt2) + (k + r2)3/4 / r3/2 dy2φ = ln ((k + r2) / r2) / 2
Hμ ν ρ = 2 k εμ ν ρ σ yσ / r4
F = 0
ε = (r2 / (k + r2))1/16 {1, 0, 0, 1, 0, 1, 1, 0} X {0, 1, 1, 0}
ds2 = r / (k + r3)1/3 ( dx2 - dt2) + (k + r3)2/3 / r2 dy2fμ ν ρ σ = 3 k εμ ν ρ σ τ yτ / r5
ε = (r3 / (k + r3))1/12 {0, 1, 1, 0, 1, 0, 0, 1} X {1, 0, 0, 1}
We compare the invariants we have chosen to examine for these membranes in such a way as to be able to compare the membranes to each other:
D | p | R |
---|---|---|
10 | 1 | - 9 k2 / (2 r1/2 (k + r6)9/4) |
10 | 5 | 3 k2 / (2 r1/2 (k + r2)11/4) |
11 | 5 | 3 k2 / (2 (k + r3)8/3) |
D | p | Ra b Ra b |
---|---|---|
10 | 1 | 2349 k4 / (4 r (k + r6)9/2) |
10 | 5 | 33 k4 / (4 r (k + r2)11/2) |
11 | 5 | 207 k4 / (4 (k + r3)16/3) |
D | p | Ra b c d Ra b c d |
---|---|---|
10 | 1 | 27 k2 (211 k2 - 448 k r6 + 1792 r12) / (16 r (k + r6)9/2) |
10 | 5 | 3 k2 (59 k2 + 192 k r2 + 384 r4) / (16 r (k + r2)11/2) |
11 | 5 | 9 k2 (13 k2 + 32 k r3 + 160 r6) / (4 (k + r3)16/3) |
D | p | Ra b Rca Rb c |
---|---|---|
10 | 1 | - 40095 k6 / (8 r3/2 (k + r6)27/4) |
10 | 5 | 75 k6 / (8 r3/2 (k + r2)33/4) |
11 | 5 | 675 k6 / (8 (k + r3)8) |
D | p | Ra b c d Ra c Rb d |
---|---|---|
10 | 1 | 729 k5 ( -25 k + 168 r6) / (8 r3/2 (k + r6)27/4) |
10 | 5 | 3 k5 (37 k + 72 r2) / (8 r3/2 (k + r2)33/4) |
11 | 5 | 27 k5 (25 k + 144 r3) / (8 (k + r3)8) |
D | p | Ra b c d Rea Rb c d e |
---|---|---|
10 | 1 | - 243 k4 (389 k2 - 1736 k r6 + 3164 r12) / (64 r3/2 (k + r6)27/4) |
10 | 5 | 3 k4 (169 k2 + 552 k r2 + 636 r4) / (64 r3/2 (k + r2)33/4) |
11 | 5 | 27 k4 (19 k2 + 96 k r3 + 80 r6) / (16 (k + r3)8) |
D | p | Ra b c d Re fa b Rc d e f |
---|---|---|
10 | 1 | 81 k3 ( -3757 k3 + 24864 k2 r6 - 84504 k r12 + 89600 r18) / (128 r3/2 (k + r6)27/4) |
10 | 5 | 3 k3 (841 k3 + 4032 k2 r2 + 6408 k r4 + 768 r6) / (128 r3/2 (k + r2)33/4) |
11 | 5 | 3 k3 (121 k3 + 816 k2 r3 + 1152 k r6 - 320 r9) / (8 (k + r3)8) |
D | p | Ra b c d Reafc Rb e d f |
---|---|---|
10 | 1 | 81 k3 ( -2747 k3 + 27552 k2 r6 - 20328 k r12 + 125440 r18) / (512 r3/2 (k + r6)27/4) |
10 | 5 | 3 k3 (895 k3 + 4608 k2 r2 + 15480 k r4 + 20736 r6) / (512 r3/2 (k + r2)33/4) |
11 | 5 | 3 k3 (221 k3 + 1776 k2 r3 + 5328 k r6 + 14720 r9) / (32 (k + r3)8) |
D | p | Ra b c d Reafc Rb f d e |
---|---|---|
10 | 1 | 81 k3 (505 k3 + 1344 k2 r6 + 32088 k r12 + 17920 r18) / (256 r3/2 (k + r6)27/4) |
10 | 5 | 9 k3 (9 k3 + 96 k2 r2 + 1512 k r4 + 3328 r6) / (256 r3/2 (k + r2)33/4) |
11 | 5 | 3 k3 (25 k3 + 240 k2 r3 + 1044 k r6 + 3760 r9) / (8 (k + r3)8) |
D | p | Ra b; c Ra b; c |
---|---|---|
10 | 1 | 81 k4 (283 k2 + 3752 k r6 + 46480 r12) / (32 r3/2 (k + r6)27/4) |
10 | 5 | 9 k4 (11 k2 + 200 k r2 + 1104 r4) / (32 r3/2 (k + r2)33/4) |
11 | 5 | 3474 k4 r6 / (k + r3)8 |
D | p | Ra b; c Ra c; b |
---|---|---|
10 | 1 | 81 k4 (541 k2 + 10136 k r6 + 22960 r12) / (64 r3/2 (k + r6)27/4) |
10 | 5 | 3 k4 (55 k2 + 744 k r2 + 1872 r4) / (64 r3/2 (k + r2)33/4) |
11 | 5 | 1089 k4 r6 / (k + r3)8 |
D | p | Ra b; a Rcb; c |
---|---|---|
10 | 1 | 81 k4 (k + 28 r6)2 / (64 r3/2 (k + r6)27/4) |
10 | 5 | 9 k4 (k + 12 r2)2 / (64 r3/2 (k + r2)33/4) |
11 | 5 | 36 k4 r6 / (k + r3)8 |
D | p | Ra b c d; e Ra b c d; e |
---|---|---|
10 | 1 | 27 k2 (499 k4 + 8680 k3 r6 + 282576 k2 r12 - 401408 k r18 + 286720 r24) / (32 r3/2 (k + r6)27/4) |
10 | 5 | 3 k2 (59 k4 + 840 k3 r2 + 5904 k2 r4 + 6144 k r6 + 18432 r8) / (32 r3/2 (k + r2)33/4) |
11 | 5 | 72 k2 r6 (56 k2 - 100 k r3 + 175 r6) / (k + r3)8 |
D | p | Ra b c d; a Reb c d; e |
---|---|---|
10 | 1 | 81 k4 (25 k2 - 2632 k r6 + 70000 r12) / (32 r3/2 (k + r6)27/4) |
10 | 5 | 3 k4 (11 k2 + 456 k r2 + 4752 r4) / (32 r3/2 (k + r2)33/4) |
11 | 5 | 4770 k4 r6 / (k + r3)8 |
D | p | Euler class |
---|---|---|
10 | 1 | 229635 k5 (5 k + 8 r6)2 (5 k3 + 24 k2 r6 - 102 k r12 - 256 r18) / (2097152 π5 r5/2 (k + r6)45/4) |
10 | 5 | - 135 k6 (8 k3 + 57 k2 r2 + 48 k r4 - 64 r6) / (1048576 π5 r1/2 (k + r2)55/4) |
D | p | εa b c ... εe f g... Rb c eh Rf g a h |
---|---|---|
10 | 1 | - 17010 k2 (485 k2 + 448 k r6 - 1792 r12) / (r (k + r6)9/2) |
10 | 5 | 1890 k2 ( -29 k2 + 192 k r2 + 384 r4) / (r (k + r2)11/2) |
11 | 5 | - 181440 k2 (33 k2 - 32 k r3 - 160 r6) / (k + r3)16/3 |
The D = 10 membranes have essential singularities at r=0, and the D=11 5-brane has one at r = -k1/3. The singularity in the D=11 5-brane metric at r=0 appears to be a coordinate singularity.
For the D = 10 branes, we find that
2 Ra b; c Ra b; c - Ra b c d; a Reb c d; e = Ra b; c Ra c; bwhile for the D = 11 brane,
2 Ra b; c Ra b; c - Ra b c d; a Reb c d; e = 2 Ra b; c Ra c; bFor all three membranes, we find that
εa b c ... εe f g... Rb c eh Rf g a h - 2 (D - 3)! Ra b c d Ra b c d ~ Ra b Ra bThe next section discusses several general results concerning warped product spacetimes.
©2005, Kenneth R. Koehler. All Rights Reserved. This document may be freely reproduced provided that this copyright notice is included.
Please send comments or suggestions to the author.